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Abstract

Beginning with fundamental properties such as passivity or
incremental passivity of the network elements comprising a
switched power converter, the nominal open-loop operation
of a broad class of such converters is shown to be stable in
the large via a Lyapunov argument. The obtained Lyapunov
function is then shown to be useful for designing globally
stabilizing controls that include adaptive schemes for han-
dling uncertain nominal parameters. Numerical simulations
illustrate the application of this control approach in DC-DC
converters.

-

1 Introduction

Most control schemes for power electronic circuits in present
use are obtained by linearizing a nonlinear model about a
nominal operating point or trajectory. Large signal transients
that occur at power up or overload recovery are handled in
an ad hoc manuer. Designers analyze each circuit individ-
ually to prescribe a schene to accomodate a designated set
of large signal transients. This paper addresses the issue of
how one might do better. In particular, the paper develops
a methodology for designing control laws for fast-switching
converters that result in globally stable behavior, robustness
against parametric uncertainty, and satisfactory transient re-
sponse. The main approach in this paper is based on the use
of Lyapunov functions.

There has been considerable previous work along these
lines. The paper of Erickson et al. [11] develops a large-signal
averaged mode) for switched converters and points out the
hazards of control designs based upon small-signal, linearized
models. The previous work on large signal control schemes
can be divided roughly into two groups. One is based on so-
called “switching-law” controls where the position of a con-
trolled switch is directly commanded as a function of the in-
stantaneous values of the circuit variables. Examples of these
are the sliding mode control schemes of (1, 2, 3, 4, 5, 6, 7, 21]
(which include current-mode control) and the bang-bang con-
trol schemes of [9, 10, 15]. The second approach relies on the
state-space averaged model for the converter of interest. Rep-
resentative schemes are those in {12, 13, 14, 22]. References

*The first author has been partially supported by an IBM fellowship.
The second author has been suppotted by the MIT/Indusity Power
Electronics Collegium and by the Air Force Office of Scientific Research
under Grant AFOSR-88-0032

George C. Verghese
Laboratory for Electromagnetic
and Electronic Systems
Massachusetts Institute of Technology

{12] and [14] also consider control design using Lyapunov func-
tions.

The paper is organized as follows. Section 2 develops fun-
damental stability properties for a broad class of switching
converters. In particular, we derive the form of a Lyapunov
function that illustrates that each member of this class is
open-loop stable. In Section 3, the Lyapunov-based control
approach is introduced. This section includes a simple ex-
ample to demonstrate the method, an outline of the general
approach, and an illustration of how an adaptation scheme
can be incorporated to haundle uncertainties in the nominal
operating point.

2 Open-Loop Stability of Switch-
ing Converters

In this section, switching convertei systems (understood to
include source and load) that consist of an intercounection
of ideal DC sources, ideal switches, incrementally passive re-
sistors, and passive linear reactive elements are considered.
Multiport circuit elements are included in the development
here. This class of switching converters is shown to he stable
by exhibiting a Lyapunov fuaction that correspouds to the
energy in the increment with respect to an arbitrary, uouunal
state trajectory. The argument is extended to include non-
linear reactive elements that are strictly relatively passive in
the case where the switchiug frequency becowes infinite, and
stability with respect to an equilibrium poiut is considered.
Essential background on network theoretic issues for the de-
velopment in this section is contained in Appendix A. (Also,
see (16, 17, 18).)

2.1 Switching Converter Stability Under
Finite Switching Frequency

Let the switching converter be composed of ideal DC sources,
ideal switches, incrementally passive resistors, and linear pas-
sive reactive elements. A diode may be considered as either
an ideal switch or as an incrementally passive resistor. \We
suppose the switches are operated in accord with a given ar-
bitrary switching pattern and suppose that we arc given a
nominal solution corresponding to the given switching pat-
tern.

For each branch of the network, denote the nominal tra-
jectory by (8(t),1(t)}, and form the (not necessarily small)
increments with respect to the nominal trajectory for each
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petwork branch, i.e.

8i(t)
Su(t)

i(t) —i(t)
v(t) — () (1)
By applying Tellegen's theorem to the increments in all the

network branches when the circuit is in any one of its topolo-
gies, we obtain

0 =

Yy v+ Y

DCsources Switches
Z Sidv+ 2 &ibv
Ind. Cep.

§idu+ Y Sidv+
Res.
)

The summation involving DC sources is always zero since
the increment in either voltage or current of each term is
necessarily zero. Tle terms involving switches also add zero
contribution to the sum in (2) for the same reason. The third
sumniation on the right-hand side of (2) is always nonnegative
since each term is individually positive or zero as a result
of the incremental passivity of the resistors. In fact, this
summation can be thought of as the dissipated power in the
increment with respect to the given nominal trajectory. The
remaining two suinmations represent the time rate of change
of the stored energy in the increment. Combining these facts,
we can write:

(3)

ivw:) =Y Sisv+ Y bibv=-3 &idv
dt Ind. Res.

Cap.
where

V(ée) = Z(l/Z)(éi;)'Lg(&g)-{-
Ind.

3" (1/2)(6us)* CulSta).

Cap.

)

(Note that the superscript * indicates transpose.) Because
of the asstunption on passivity of the reactive elements, the
quantity V(ér) which we shall from now on refer to by the
suggestive name energy in the increment, is a positive definite
quadratic function of the incremiental state variables. Since
equation (2) holds identically for any of the possible circuit
topologies, the euergy in the increment is a Lyapunov func-
tion for the dynamical system. In particular, we have

%V(6z) =-Y svdi<o. (5)
Ras.

In conclusion, the energy in the increment is a Lyapunov
function for tlie given nominal trajectory, and we see that the
nominal trajectory is stable in the large. Since the nominal
trajectory selected above can be taken as any solution trajec-
tory, this statement implies that any two solution trajectories
do not diverge.

Typically, asymptotic stability in the large can be con-
cluded as well since at least some parasitic loss is always asso-
ciated with each energy storage element, i.e. series resistance
with inductors and parallel leakage resistance with capaci-
tors. An argnment for asymptotic stability appears in [16]
for circuits that have a DC equilibrium point, and consist of
only two-terminal elements. I [16], lossiness is guaranteed to
be associated with each state variable by excluding inductor-
capacitor-voltage source loops and inductor-capacitor-current

source cutsets. (In this case, we would require that all resis-
tors be strictly incrementally passive.)

A special case of the above result is when the switches are
operated with a periodic switching pattern, and there exists a
nomiual periodic steady state solutiou. Iu this case, the result
states that the given periodic steady state trajectory is stable
in the large. This result is of particular iuterest for the case
of a DC-DC converter operating with constant switching fre-
quency. Note that this result holds up for DC-DC converters
operating in the discontinsows conduction mode. This can be
seen by redrawing the schematic for the DC-DC coanverter of
interest with an ideal SPDT switch and incrementally passive
resistive device (i.e. diode) replacing each transistor-diode
pair. For example, we would redraw the up-down converter
of Figure 2 as shown in Figure 1. The circuit of Figure 1 sat-
isfies the conditions for its nominal periodic trajectory to be
stable in the large, and it makes no difference whetlher or not
the nominal trajectory contains a portion where the inductor
current is identically zero.

I,

Figure 1: Up-Down Converter Redrawn to Mllustrate Stability
in Case of Discontinuous Conducion

2.2 Stability under Infinite Switching Fre-
quency and Constant Duty Ratio

The result given above can be extended to the case where
the switching frequency becomes infinite. Infinite switching
frequency actually corresponds to the state-space averaged
model for a converter, and in this way an open-loop stability
result can be obtained for state-space averaged models. The
main difference from the case of finite switching frequeuncy is
that one needs to consider the stability of an equilibrinm point
for an averaged model of a DC-DC converter rather than a
limit cycle. In such a set-up, it is possible to include poulin-
ear reactive elements as well as nonlinear resistive elements.
This is of interest in power electronic circuits since nounlinear
reactive elements do occur in practice. The following theorem
summarizes the result for infinite switching frequency.

Theorem 2.1 Suppose that o swilching converter is con-
structed from ideal switches. ideal DC sources, incrementally
passive resistors, reactive elements that are strictly relatively
passive, and that ils averaged model has an equilibrium point,
then the equilibrium is stable in the large.

This theorem is easily proven by demounstrating the exis-
tence of an appropriate averaged circuit model. See [23] for
more details. We shall rely heavily on this result in the sequel
where control laws based on state-space averaged models are

developed.




3 Lyapunov-Based Control Desigri

In this section, an approach to control of switching power
converters based on the use of Lyapunov functions will be
introduced. The main focus will be on control d~sign based
on the state-space averaged model for a given switching con-
verter. The converters of interest are those that satisfy the
coonditions guaranteeing that nominal state trajectories are
globally stable under open-loop operation, specifically con-
verters constructed from incrementally passive resistors, ideal
sources, ideal switches, and passive linear reactive elements.
Oune particular choice of Lyapunov function for control de-
sign purposes that will be of interest is the energy in the
increment.

We shall begin by illustrating the Lyapunov-based control
method with an application to an up-down converter. Then,
we shall demonstrate how such a control design can be ob-
tained in a more general way. There is typically some freedom
in the choice of Lyapunov function for the control design, but
we shall exhibit some particular advantages of using the en-
ergy in the increment Finally, we show how an :daptation
scheme can be incorporated to handle parametric uncertainty.
Generalizations to converters containing nonlinear circuit el-
ements. to converters that handle time-varying input-output
waveforms, and to converters operating in the discontinuous
conduction mode are given in the thesis [23]. A method (dual
to the control design approach) for designing state observers
is also considered in [23].

3.1 Example: Up-Down Converter
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Figure 2: Up-Down Converter

Consider the up-down converter of Figure 2 which has a state-
space averaged model of the form

z' = Az + (Br + b)d, (6)
where the two-component state z consists of the deviation
of the inductor current from its nominal value (z; =i —,)
and the deviation of the capacitor voltage from its nominal
(z3 = v = v,), and where the input d is the deviation in
the duty ratio from its nominal value (d = d; — d,). (Note
that d, iudicates the total duty ratio here.) The parameter
values listed below were selected for operation at a switching
frequeucy of 50kHz.

C = 54uF
L = 0.18mH
R = oo
d, = 3/8
V, = 15volts

I, = 2amps
v = =9volts
fa = 3.2amps

The relevant matrices of the system are as follows:

A [ 0 (1-d/L
= l-0-d)c o0
0 -1/L
B = i/C o
b = (Ve —va)/L
in/C
Lo
o= [oe]

The result on open-loop stability in Section 2 guarantees that
the energy in the increment is a Lyapunov function for open-
loop operation of this circuit. For the up-down converter, the
energy in the increment takes the form

_l i — 3 )3 .1. ) N
_21,(, i) +3C( va)?, (7)

or 1
V= EI.QI.

Differentiating V along the system trajectories, we obtain

(8)

d 1
_V . = -p® y -
X (z) 2: (QA+ A"Q)r +

%{;'(Qa +B°Q)r+20°Qs}d.  (9)
It turns out that QA + A*Q = 0 for this example, which
verifies that the energy in the increnient is a Lyapunov func-
tion for open-loop operation (d = 0). In this exanple, it is
also true that QB + B°Q = 0. These relationships hold be-
cause of the lossless nature of the examnple converter, i.e. the
lack of resistive elements in the converter. Considering these
relationships, (9) simplifies considerably to

d

ZV(z) = (b°Qr)d. (10) -
dt

Many stabilizing control schemes can be obtained by in-
s;ctioa of (10). We shall cousider the simple control law
d = -a'" 2z with a real aud positive, modified to haudle the

dut) 2 saturation constraint —d, < d <1 ~d,,i.e.
—-ay, "dn S d S 1 - du
d={ ~d., =—-ay<-—d, 11)
1-dy, —ay>1-d,
where y = 5°Qz. Here, the variable y takes the form
y = (W —va)(i i) +1a(v—v,)
= (V, = o)i = in) +i(v = t3). (12)

Note that the only dependence on circuit parameters is on the
nominal values of the inductor current, the capacitor voltage,
and the source voltage. This property is shared by analagous
control schemes based on the energy in the increment for




many other switching converters, as will be discussed in Sub-
section 3.3. The dependence on nominal values of circuit
variables is of crucial importance, and this issue is addressed
in Subsection 3.4. There, a method for adaptively estimating
these values is developed.

To irvestigate the closed-loop behavior, we examine the
derivative of the Lyapunov function V'(z) along the closed-
loop s¥stem trajectoties:

%V(.r) yd

_ayz’ -dll Sdsl“dn
= { —day, —ay < —da (13)
(1-d)y, —ay>1—-da

In the saturated regions (the second and third lines of (13)),
the time derivative of V(z) is strictly negative since either
V! < —ad? or V' < —a(l —d,). As a result, state trajecto-
ries quickly enter the unsaturated region. In the unsaturated
region (the first line in (13)), V(z) is strictly decreasing if
y # 0. and asymptotic stability can be concluded by LaSalle's
theorem since y = 0 is not a system trajectory unless z = 0,
To see this, note that y = 0 implies d = 0 and the following:

Qz 0
b"QAr 0, (14)

with the last line in (14) obtained by noting that y’ = 0. The
existence of a nonzero solution z to (14) is equivalent to the
statement that the pair {6"Q,.4} is unobservable. However,
this pair is observable in this example, and therefore there
are no system trajectories that do not converge to the origin,

In (ks example, we have not considered the effect of lossi.
ness dze to parasitic and/or load resistances. The effect of
such passive resistances would only enhance our stability re-
sult, by causiug additional nonpositive terms of the form
~2*Rr (with R positive semi-definite) to be added to the
tenus ou the right-hand sides of (13).
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Figure 3: Root-Locus for Linearized Closed-Loop Control
System

Asymptotically, the decay of the Lyapunov function V(z)
is con:rolled by the eigenvalues of the small signal model ob-
tained by linearizing the closed-loop systemn about z =0. In
this example, there is some freedom in placing the eigenvalues

of the linearized closed-loop system by choice of the gain a.
A root locus of the closed-loop eigenvalues of the small-signal
model is shown in Figure 3. To minimize the maximumn of
the real parts of the eigenvalues, for example, the gain should
be selected so that the two eigenvalues coincide on the real
axis at —20.05Krad/sec. An easy calculation indicates that
the value of the gain required to obtain this eigenvalue place-
ment is approximately a = .00785. In the remainder of the
discussion of this example, a value of the gain of @ = .008
will be used. The resulting closed-loop eigenvalues are at
about —16.7Krad/sec anad —24Krad/sec. Note that in this
example the dynamical bebavior of the small signal closed-
loop dynamics is limited by the natural resonaat frequency
(1 —d,)/VLC of the open-loop state-space averaged system.
Since the bandwidth of the closed-loop dynamics is usually
designed to be approximately as order of magnitude below
the switching frequency, and since this is also a typical res-
onaat frequency of the open-loop dynamics for a reasonably
designed converter, the preceding limit on attainable closed-
loop bandwidth is acceptable.

We expect the closed-loop system to be very well behaved,
and this is confirmed by the digital computer simulation
shown in Figure 4. In the following subsection, we present

v Vix)
0. 3.
Q. 9.1
Y | S— t 0. e
cJ.1 1.5 (xS) 0. 1.8 (a$)
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Figure 4: Digital Siinulation of Up-Down Couverter uuder
Nonlinear Feedback Control Scheme

a derivation of a class of control schemes to which the above
example belongs.

3.2 A Basic Approach to Lyapunov-Based
Control Design

In this subsection, we show how to derive a class of control
laws for a switching converter model of the form (6), to which
the example (11) belongs. Note that the open-loop stability
of the system (6) is crucial for this approach, and hence we
shall restrict attention to switching converters that satisfy the
conditions guaranteeing stability under nominal duty ratio
operation. A basic first step in this approach, as illustrated
above, is the specification of a Lyapunov function for open-
loop operation. The model (6} is linear and timne-invariant
in the case of open-loop operation under a constant nominal
duty ratio, i.e. d = 0. Since the open-loop model is known
a priori to be stable, it is generally possible to determine

4




a family of suitable quadratic Lyapunov functions. In fact,
in the case where the matrix A is asymptotically stable, it is
possible to parametrize the family of such quadratic functions
with the Lyanuuov equation

AQ+QA=-AF (15)
where {( Py, A} is an observable pair. The existence of a pos-
itive definite, symmetric solution Q, to (15) is guaranteed
by the stability of the matrix A and the observability of the
pair { Py, A} [8]. See [23] for a method of selecting a suit-
able matrix @, for the case where the matrix A has (simple)
eigenvalues on the jw-axis.

Having determined the form of a suitable matrix Q,, it is
straigh :forward to specify a globally stabilizing control law for
the model (6) of the form (11), but based on the Lyapunov
functioa V() = 11°Qiz, as follows:

—ay, —dya<-ay<l-d,
d={ —d,, —ay<-d (16)
1-d,, —ay>1—-d,

where y = (Bz + 5)°Q,zr. One particular choice for Q, is Q
where V'(r) = Lr°Qz is the energy in the increment, and it
turus out that this choice leads to certain nice features, which

are elaborated below.

3.3 Advantages of the Use of the Energy
in the Increment for Control Purposes

As noted in the previous subsection, there is typically some
freedozu in the choice of the Lyapunov function that can be
used in the control designs described there. Here, we outline
tlree advautages obtaiued by using the energy in the incre-
meut as the Lyapunov function in these control schemes.

Oue advauntage of the choice of the energy in the increment
as the Lyapunov function for control design purposes arises
in the computation of the variable y = (B + b)°*Qz which is
used ia these control schemes. In particular, one can always
(indirectly) measure the vector Q(Bz + b). To see this, con-
sider tae modification of (6) where we multiply this equation
ou the left by the matrix Q, giving

Qz' = QAz + Q(Bz 4 b)d. 17)

Now the vector on the left-hand side of (17) is composed of the
time derivatives of the inductor fluxes and the time deriva-
tives of the capacitor charges. The elements of this vector
are necessarily inductor voltages and capacitor currents. The
vector Q(Br + b) is the amount by which this vector changes
when the duty ratio steps from —d, to 1 —d,, or equivalently,
the amount this vector changes when the switch configuration
is changed. In general, it is possible and feasible to determine
the vector Q(Bz + b) during each cycle. To do this, for each
inductor branch one would measure the voltage across the
branch in each of the two switch configurations, and then
form the difference of the two measurements. This difference
constizutes the element of Q( Bz +b) cotresponding to the par-
ticular juductor port. In the case of a capacitor, one would
measu-e the current flowing into the capacitor in each of the
two switch configurations, and form the difference of the two
measired curreuts. This difference constitutes the element
of Q(Br + b) corresponding to the particular capacitor. By
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Figure 5: Up-Down Converter with Additional Filter Sections

performing the described measurement process, it is possible
to obtain an accurate measurement of the vector Q(Br + b).
Consequently, one can compute the variable y = r*Q(Bz +b)
by forming the inner product of z and Q(B.r + b). The only
parametric dependence is therefore on the nominal state val-
ues required to determine z, the deviation in the states from
their nominal values.

In certain cases, it is possible to further simplify the mea-
surement of Q(Bz + b). For these cases, it is possible to
directly measure the vector Q(Br + b) by measuring certain
branch voltages and branch currents in the circuit at one time
instant. One such example is the up-down converter of Figure
2. For this example, the vector

Vi-v
i .

Q(B.r+b)=[

and these quantities can be directly measured on the con-
verter circuit. Necessary and sufficient conditions for such a
simple measurement of the vector Q{ B.r + ) are giveun in [23).

A second potential advantage of the choice @, = Q in
(16) is that it is possible to use a wvearly linear version of
this control algorithm by replacing y = (Br + b)*Q.r in (16)
with yiia = 5°Qz, and still maintain global stability. (Of
course, the saturation constraints are still in effect.) To see
that global stability is maintained. consider the following Lya-
punov analysis with V(z) = 1z°Qz:

(18)

%V(:) = %z'[(.& +dB)*Q + Q(A+dB)jz + (b°Qr)d. (19)

Now the first term on the right-hand side of (19) is always
nonpositive. This follows from the fact that the energy in
the increment takes the form 1z°Qr for any nominal duty
ratio, with the fixed matrix Q. The choice of the control in
(16) (using yim) forces the second term on the right-hand side
of (19) to be nonpositive. Global stability resuits from the
nonpositivity of the right-hand side of (19). Hence, the choice
of @; = Q in (16) permits the use of a feedback control that
requires only the computation of the linear variable yjia.

A third advantage of the use of the energy in the increment
as a Lyapunov function for control desigu is that a coutrol law
of the form (16) with Q; = Q can result in global stability of
a more complex power system in which the original converter
is embedded. In particular, if the converter is interconnected
only with (relatively) passive circuit elements, the resnlting
interconnected system is always guaranteed to be stable. For
example, if an additional section of output filter is added to
the up-down converter of Example 2, as shown iu Figure 5,
the control law designed for the original couverter stabilizes
the modified circuit.




3.4 Adaptive Control Method to Handle
Uncertain
Nominal State Values

This subsection considers a control design of the form (11) for
the mode] (6), but ia the case where the nominal state vector
is unknown. The effect of this uncertainty is to replace the

variable y by
y= (Bz+b)°Q(z - 6z.)

where &1, is the uncertainty in the nominal operating point,
that is
(20)

§xp=F0—Za
where #. is an estimate of the sominal operating point.
To implement the self-tuning scheme, we shall include as
part of an augmented state vector, an estimate #.(t) of the
constant nominal value of the state vector for the original
plant. We can equivalently represent this estimate by its er-
ror, i.e. 8ra(t) = Fa(t) — zo. The update law for &z,(t) is
selected by considering the Lyapunov function
1

V=2eQs+ %(5:,.)'1((53,.) (1)
where R is a symmetric positive definite matrix and Q is as
previously specified. In particular, it is possible to stabilize

the system by choosing the update law to be

\
/

d

Et-(&t,.) =-R-'Q(Br +b) (22
in conjunction with the control law (11). Note that y can
now be determined witliout any uncertainty arising from the

unknown uomiual state values since
T =bzrp= (24— 24) — (¥n — Za) =2, — g,

where z, is the actual full state value (which can be measured)
while 7. is stored in the controller. Note that it is generally
possible to obtain an accurate measure of Q(Bzx + b) as dis-
cussed in Subsection 3.3.

Example: Estimation of Nominal Inductor Current in
Simple Up-Down Converter In this example, we apply
the adaptive control scheme to the second order up-down con-
verter whose parameters are given in Section 3.1. We now as-
sume, bowever, that the load is unknown but constant in the
steady state. As a consequence, the nominal inductor current
is also anknown. This is the parameter that our self-tuning
mechanism will estimate. In this example, it is assumed that
the input voltage V, is known (i.e. measured), the nominal
output voltage v, is defined by the regulation problem, and
the nominal duty ratio d,, is known. (The nominal duty ratio
can usually be determined from V, and v,.) We work with
the augmented model

Y 0 (1-da)/L © [ i
v = | =(1-d,)/} 0 (i} v |+
[(6:‘.)'] [ 0 o o] (&)
(V--Ul)/L
#/C d
—k1(V, — )

(Ve = vd{i — (8ia)} + ie(v = va).

Note that in this model, the quantities without subscripts are
deviations from nominal, the quantities with subscript ¢ ate
total variables that can be measured, and the quantities with
subscript n are nominal variables. We only attempt to esti-
mate the nominal inductor current since the other nominal
state variable (the capacitor voltage) is known. The output y
of this model can be determined exactly siuce 1 — (§1,.) is pre-
cisely i, — 1, i-e. the difference between the actual inductor
current and the present estimiate of the noniinal value of this
current. The control design can be completed by specify-
ing £ > 0 and a feedback gain a. These parameters may
be selected by considering the small signal behavior. For
example, with a nominal load current of 2awmps, the eigen-
values of the small signal linearized model can be placed
at —7.713 £ j12.9Krad/sec and —11.36Krad/sec by select-
ing k = 2778 and the unsaturated gain a = .004. Other
parameter choices can result in still faster small signal be-
havior. A numerical simulation of a start-up transient using
these parameters is shown in Figure 6. Note that the initial
condition for the estimate of the nominal inductor was taken
as zero. °

Figure 6: Start-Up Trausient in Second Order Couverter Us-
ing Adaptive Control Scheme

More complex examples that require estimation of more
than one nominal state are considered in [23).

4 Summarizing Remarks

The Lyapunov-based control described in this paper is evi-
dently a promising approach to the control of switched-mode
power converters. The metlod can he extended to couvert-
ers that handle time-varying input-output waveforms, see the
discussion in [23]. In applications in distributed power sup-
ply environments, this type of control may prove very useful
since it may become necessary to stabilize arbitrary intercon-
nections of converters and loads. The method also lends itself

(23) to the design of state observers as outlined in [23].




A Passivity, Incremental Passivity,
and Relative Passivity

In order to state the following definitions in a relatively gen-
eral way, we assume the input-output vector pair of an n-port
to be a hybrid pair. That is, the input u(t) and output y(t) of
an n-port are n-component vectors whose elements represent
port voltages or currents. The components of y(t) are com-
plemen:ary to those of u(t), and oriented such that u(t)"y(¢)
is the instantaneous power entering the network at its ports.
In the following, the networks of interest are assumed to be
time-invariant unless otherwise noted.

Passivity The definition of passivity presented in Wyatt
et. al. [17], Wyatt [19), and in Hasler and Neirynck [16] will
be adopted here.

Definition A.1 (Available Energy) Given an n-port N,
let the available energy E, . in state z be the maznimum
energy that can be eztracted from N when its initial state is
z, with the convention that E4 . = +00 if the available energy
1s unbounded. That 1s,

T
Eax=sup [ —utyy(t)t

Definition A.2 (Passivity) N is passive if E4 is finite
for each initial state z.

Note that this definition of passivity is directly tied to a state-
space realization for the n-port in question. This is not ob-
jectiorable for our purposes since we aim to draw conclusions
for swizching converters for which state models are readily
obtained. In the context of a switching converter, the con-
cept of passivity is of use in viewing a coctrolled converter as
au intezconnection of various n-ports.

(24)

Incremental Passivity The definition given here follows
the system theoretic framework of Desoer and Vidyasagar
[20).

Definition A.3 (Energy in the Increment) Given an n-
port N with initial state 1, let (uy(t),y1(t)) and (u3(t),ya(t))
be any two admissible input-output trajectories on [0, T) wi
T fine. The energy in the increment between the two
trajectories is defined by

T
W,(T) = /o (1 = ua)"(ys - ya) dt.

Definition A.4 (Incremental Passivity) An n-port N
with mitial state z is incrementally passive at state z if
W_(T). the energy in the increment defined in (25{, is non-
negalice for every pair of admissible trajectories on [0, T} with
T finite. If the network is incrementally passive af all states
z in the state space. it is said to be incrementally passive.
The n-port is strictly incrementally passive at state z
if W,(T) > 0 whenever the two trajectories are distinct. The
netwo—% is strictly incrementally passive if it is strictly
increr.entally passive at every state in the state-space.

(25)

Note t-at this definition is closely tied to the definition of pas-
sivity. A passive network can supply only finite energy while
an incrementally passive network can absorb only nonnega-
tive ez ergy in the increment hetween two trajectories (W, in

(25))-

Relative Passivity Incremental passivity proves to be too
strong a condition in the case of certain nonlinear n-ports. In
fact, many nonlinear networks that are not incrementally pas-
sive exhibit a closely related property that we shall term rel
ative passivity. Another closely related notion, local passimty
for a capacitor (or inductor) bas been introduced in (16, 25j.
However, our definition of relative passivity is potentially ap-
plicable to any type of network. To defiue a relatively passive
network, we examine the energy in the increment with respect
to a coustant pominal operatiug point.

Definition A.S (Relative Passivity) Given an n-port N
with equilibrium state z., and nominal output y, correspond-
ing to the constant input u,, consider the admiasible trajec-
tory (u(t),y(t)) on [0,T) that is obtained with instial state
z(0) = za. n-port is relatively passive at z, if

T
WalT) = [ [u(t) - wl'ly(8) - saldt 20 (26)
for any finite T. The n-port is relatively passive if (26)
holds for any mominal operating point. N is strictly rela-
tively passive at r, if the inequality in (26) is strict when-
ever (T) # z,. N is strictly relatively passive if it is
strictly relatively passive for any constant nominal state.

In the case of lossless elemnents for which W';_(T') is a function
of only z, and z(T'), W, (T) can be useful as a Lyapunov
function.
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